关注码农话题
做一个实实在在的内行人

那些著名或非著名的iOS面试题

1.如何追踪app崩溃率,如何解决线上闪退

当iOS设备上的App应用闪退时,操作系统会生成一个crash日志,保存在设备上。crash日志上有很多有用的信息,比如每个正在执行线程的完整堆栈跟踪信息和内存映像,这样就能够通过解析这些信息进而定位crash发生时的代码逻辑,从而找到App闪退的原因。通常来说,crash产生来源于两种问题:违反iOS系统规则导致的crash和App代码逻辑BUG导致的crash,下面分别对他们进行分析。

违反iOS系统规则产生crash的三种类型

(1) 内存报警闪退
当iOS检测到内存过低时,它的VM系统会发出低内存警告通知,尝试回收一些内存;如果情况没有得到足够的改善,iOS会终止后台应用以回收更多内存;最后,如果内存还是不足,那么正在运行的应用可能会被终止掉。在Debug模式下,可以主动将客户端执行的动作逻辑写入一个log文件中,这样程序童鞋可以将内存预警的逻辑写入该log文件,当发生如下截图中的内存报警时,就是提醒当前客户端性能内存吃紧,可以通过Instruments工具中的Allocations 和 Leaks模块库来发现内存分配问题和内存泄漏问题。

(2) 响应超时
当应用程序对一些特定的事件(比如启动、挂起、恢复、结束)响应不及时,苹果的Watchdog机制会把应用程序干掉,并生成一份相应的crash日志。这些事件与下列UIApplicationDelegate方法相对应,当遇到Watchdog日志时,可以检查上图中的几个方法是否有比较重的阻塞UI的动作。

application:didFinishLaunchingWithOptions: 
applicationWillResignActive:
applicationDidEnterBackground: 
applicationWillEnterForeground:
applicationDidBecomeActive:
applicationWillTerminate:

(3) 用户强制退出
一看到“用户强制退出”,首先可能想到的双击Home键,然后关闭应用程序。不过这种场景一般是不会产生crash日志的,因为双击Home键后,所有的应用程序都处于后台状态,而iOS随时都有可能关闭后台进程,当应用阻塞界面并停止响应时这种场景才会产生crash日志。这里指的“用户强制退出”场景,是稍微比较复杂点的操作:先按住电源键,直到出现“滑动关机”的界面时,再按住Home键,这时候当前应用程序会被终止掉,并且产生一份相应事件的crash日志。

应用逻辑的Bug
大多数闪退崩溃日志的产生都是因为应用中的Bug,这种Bug的错误种类有很多,比如

  SEGV:(Segmentation Violation,段违例),无效内存地址,比如空指针,未初始化指针,栈溢出等;
  SIGABRT:收到Abort信号,可能自身调用abort()或者收到外部发送过来的信号;
  SIGBUS:总线错误。与SIGSEGV不同的是,SIGSEGV访问的是无效地址(比如虚存映射不到物理内存),而SIGBUS访问的是有效地址,但总线访问异常(比如地址对齐问题);
  SIGILL:尝试执行非法的指令,可能不被识别或者没有权限;
  SIGFPE:Floating Point Error,数学计算相关问题(可能不限于浮点计算),比如除零操作;
  SIGPIPE:管道另一端没有进程接手数据;

常见的崩溃原因基本都是代码逻辑问题或资源问题,比如数组越界,访问野指针或者资源不存在,或资源大小写错误等。

crash的收集

如果是在windows上你可以通过itools或pp助手等辅助工具查看系统产生的历史crash日志,然后再根据app来查看。如果是在Mac 系统上,只需要打开xcode->windows->devices,选择device logs进行查看,如下图,这些crash文件都可以导出来,然后再单独对这个crash文件做处理分析。

看日志

市场上已有的商业软件提供crash收集服务,这些软件基本都提供了日志存储,日志符号化解析和服务端可视化管理等服务:

Crashlytics (www.crashlytics.com)
Crittercism (www.crittercism.com)
Bugsense (www.bugsense.com)
HockeyApp (www.hockeyapp.net)
Flurry(www.flurry.com)

开源的软件也可以拿来收集crash日志,比如Razor,QuincyKit(git链接)等,这些软件收集crash的原理其实大同小异,都是根据系统产生的crash日志进行了一次提取或封装,然后将封装后的crash文件上传到对应的服务端进行解析处理。很多商业软件都采用了Plcrashreporter这个开源工具来上传和解析crash,比如HockeyApp,Flurry和crittercism等。

crash信息

由于自己的crash信息太长,找了一张示例:
1)crash标识是应用进程产生crash时的一些标识信息,它描述了该crash的唯一标识(E838FEFB-ECF6-498C-8B35-D40F0F9FEAE4),所发生的硬件设备类型(iphone3,1代表iphone4),以及App进程相关的信息等;
2)基本信息描述的是crash发生的时间和系统版本;
3)异常类型描述的是crash发生时抛出的异常类型和错误码;
4)线程回溯描述了crash发生时所有线程的回溯信息,每个线程在每一帧对应的函数调用信息(这里由于空间限制没有全部列出);
5)二进制映像是指crash发生时已加载的二进制文件。以上就是一份crash日志包含的所有信息,接下来就需要根据这些信息去解析定位导致crash发生的代码逻辑, 这就需要用到符号化解析的过程(洋名叫:symbolication)。

解决线上闪退
首先保证,发布前充分测试。发布后依然有闪退现象,查看崩溃日志,及时修复并发布。

2.什么是事件响应链,点击屏幕时是如何互动的,事件的传递。

事件响应链

对于IOS设备用户来说,他们操作设备的方式主要有三种:触摸屏幕、晃动设备、通过遥控设施控制设备。对应的事件类型有以下三种:

1、触屏事件(Touch Event)

2、运动事件(Motion Event)

3、远端控制事件(Remote-Control Event)

响应者链(Responder Chain)
响应者对象(Responder Object),指的是有响应和处理事件能力的对象。响应者链就是由一系列的响应者对象构成的一个层次结构。

UIResponder是所有响应对象的基类,在UIResponder类中定义了处理上述各种事件的接口。我们熟悉的UIApplication、 UIViewController、UIWindow和所有继承自UIView的UIKit类都直接或间接的继承自UIResponder,所以它们的实例都是可以构成响应者链的响应者对象。

响应者链有以下特点:
1、响应者链通常是由视图(UIView)构成的;
2、一个视图的下一个响应者是它视图控制器(UIViewController)(如果有的话),然后再转给它的父视图(Super View);
3、视图控制器(如果有的话)的下一个响应者为其管理的视图的父视图;
4、单例的窗口(UIWindow)的内容视图将指向窗口本身作为它的下一个响应者
需要指出的是,Cocoa Touch应用不像Cocoa应用,它只有一个UIWindow对象,因此整个响应者链要简单一点;
5、单例的应用(UIApplication)是一个响应者链的终点,它的下一个响应者指向nil,以结束整个循环。

点击屏幕时是如何互动的
iOS系统检测到手指触摸(Touch)操作时会将其打包成一个UIEvent对象,并放入当前活动Application的事件队列,单例的UIApplication会从事件队列中取出触摸事件并传递给单例的UIWindow来处理,UIWindow对象首先会使用hitTest:withEvent:方法寻找此次Touch操作初始点所在的视图(View),即需要将触摸事件传递给其处理的视图,这个过程称之为hit-test view。

UIWindow实例对象会首先在它的内容视图上调用hitTest:withEvent:,此方法会在其视图层级结构中的每个视图上调用pointInside:withEvent:(该方法用来判断点击事件发生的位置是否处于当前视图范围内,以确定用户是不是点击了当前视图),如果pointInside:withEvent:返回YES,则继续逐级调用,直到找到touch操作发生的位置,这个视图也就是要找的hit-test view。

hitTest:withEvent:方法的处理流程如下:首先调用当前视图的pointInside:withEvent:方法判断触摸点是否在当前视图内;若返回NO,则hitTest:withEvent:返回nil;若返回YES,则向当前视图的所有子视图(subviews)发送hitTest:withEvent:消息,所有子视图的遍历顺序是从最顶层视图一直到到最底层视图,即从subviews数组的末尾向前遍历,直到有子视图返回非空对象或者全部子视图遍历完毕;若第一次有子视图返回非空对象,则hitTest:withEvent:方法返回此对象,处理结束;如所有子视图都返回非,则hitTest:withEvent:方法返回自身(self)。

事件的传递和响应分两个链:

传递链:由系统向离用户最近的view传递。UIKit –> active app’s event queue –> window –> root view –>……–>lowest view
响应链:由离用户最近的view向系统传递。initial view –> super view –> …..–> view controller –> window –> Application

3.Run Loop是什么,使用的目的,何时使用和关注点

Run Loop是一让线程能随时处理事件但不退出的机制。RunLoop 实际上是一个对象,这个对象管理了其需要处理的事件和消息,并提供了一个入口函数来执行Event Loop 的逻辑。线程执行了这个函数后,就会一直处于这个函数内部 “接受消息->等待->处理” 的循环中,直到这个循环结束(比如传入 quit 的消息),函数返回。让线程在没有处理消息时休眠以避免资源占用、在有消息到来时立刻被唤醒。

OSX/iOS 系统中,提供了两个这样的对象:NSRunLoop 和 CFRunLoopRef。CFRunLoopRef 是在 CoreFoundation 框架内的,它提供了纯 C 函数的 API,所有这些 API 都是线程安全的。NSRunLoop 是基于 CFRunLoopRef 的封装,提供了面向对象的 API,但是这些 API 不是线程安全的。

线程和 RunLoop 之间是一一对应的,其关系是保存在一个全局的 Dictionary 里。线程刚创建时并没有 RunLoop,如果你不主动获取,那它一直都不会有。RunLoop 的创建是发生在第一次获取时,RunLoop 的销毁是发生在线程结束时。你只能在一个线程的内部获取其 RunLoop(主线程除外)。

系统默认注册了5个Mode:

  1. kCFRunLoopDefaultMode: App的默认 Mode,通常主线程是在这个 Mode 下运行的。
  2. UITrackingRunLoopMode: 界面跟踪 Mode,用于 ScrollView 追踪触摸滑动,保证界面滑动时不受其他 Mode 影响。
  3. UIInitializationRunLoopMode: 在刚启动 App 时第进入的第一个 Mode,启动完成后就不再使用。
  4. GSEventReceiveRunLoopMode: 接受系统事件的内部 Mode,通常用不到。
  5. kCFRunLoopCommonModes: 这是一个占位的 Mode,没有实际作用。

Run Loop的四个作用:

使程序一直运行接受用户输入
决定程序在何时应该处理哪些Event
调用解耦
节省CPU时间

主线程的run loop默认是启动的。iOS的应用程序里面,程序启动后会有一个如下的main() 函数:

 int main(int argc, char *argv[])
 {
        @autoreleasepool {
          return UIApplicationMain(argc, argv, nil, NSStringFromClass([appDelegate class]));
       }
  }

重点是UIApplicationMain() 函数,这个方法会为main thread 设置一个NSRunLoop 对象,这就解释了本文开始说的为什么我们的应用可以在无人操作的时候休息,需要让它干活的时候又能立马响应。

对其它线程来说,run loop默认是没有启动的,如果你需要更多的线程交互则可以手动配置和启动,如果线程只是去执行一个长时间的已确定的任务则不需要。在任何一个Cocoa程序的线程中,都可以通过:

NSRunLoop   *runloop = [NSRunLoop currentRunLoop];

来获取到当前线程的run loop。

一个run loop就是一个事件处理循环,用来不停的监听和处理输入事件并将其分配到对应的目标上进行处理。

NSRunLoop是一种更加高明的消息处理模式,他就高明在对消息处理过程进行了更好的抽象和封装,这样才能是的你不用处理一些很琐碎很低层次的具体消息的处理,在NSRunLoop中每一个消息就被打包在input source或者是timer source中了。使用run loop可以使你的线程在有工作的时候工作,没有工作的时候休眠,这可以大大节省系统资源。

RunLoop

什么时候使用run loop
仅当在为你的程序创建辅助线程的时候,你才需要显式运行一个run loop。Run loop是程序主线程基础设施的关键部分。所以,Cocoa和Carbon程序提供了代码运行主程序的循环并自动启动run loop。IOS程序中UIApplication的run方法(或Mac OS X中的NSApplication)作为程序启动步骤的一部分,它在程序正常启动的时候就会启动程序的主循环。类似的,RunApplicationEventLoop函数为Carbon程序启动主循环。如果你使用xcode提供的模板创建你的程序,那你永远不需要自己去显式的调用这些例程。

对于辅助线程,你需要判断一个run loop是否是必须的。如果是必须的,那么你要自己配置并启动它。你不需要在任何情况下都去启动一个线程的run loop。比如,你使用线程来处理一个预先定义的长时间运行的任务时,你应该避免启动run loop。Run loop在你要和线程有更多的交互时才需要,比如以下情况:
使用端口或自定义输入源来和其他线程通信
使用线程的定时器
Cocoa中使用任何performSelector…的方法
使线程周期性工作

关注点

  1. Cocoa中的NSRunLoop类并不是线程安全的
    我们不能再一个线程中去操作另外一个线程的run loop对象,那很可能会造成意想不到的后果。不过幸运的是CoreFundation中的不透明类CFRunLoopRef是线程安全的,而且两种类型的run loop完全可以混合使用。Cocoa中的NSRunLoop类可以通过实例方法:

     - (CFRunLoopRef)getCFRunLoop;

    获取对应的CFRunLoopRef类,来达到线程安全的目的。

  2. Run loop的管理并不完全是自动的。
    我们仍必须设计线程代码以在适当的时候启动run loop并正确响应输入事件,当然前提是线程中需要用到run loop。而且,我们还需要使用while/for语句来驱动run loop能够循环运行,下面的代码就成功驱动了一个run loop:

    BOOL isRunning = NO;
    do {
         isRunning = [[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode beforeDate:[NSDatedistantFuture]];
    } while (isRunning);
  3. Run loop同时也负责autorelease pool的创建和释放
    在使用手动的内存管理方式的项目中,会经常用到很多自动释放的对象,如果这些对象不能够被即时释放掉,会造成内存占用量急剧增大。Run loop就为我们做了这样的工作,每当一个运行循环结束的时候,它都会释放一次autorelease pool,同时pool中的所有自动释放类型变量都会被释放掉。

4. ARC和MRC

Objective-c中提供了两种内存管理机制MRC(MannulReference Counting)和ARC(Automatic Reference Counting),分别提供对内存的手动和自动管理,来满足不同的需求。Xcode 4.1及其以前版本没有ARC。

在MRC的内存管理模式下,与对变量的管理相关的方法有:retain,release和autorelease。retain和release方法操作的是引用记数,当引用记数为零时,便自动释放内存。并且可以用NSAutoreleasePool对象,对加入自动释放池(autorelease调用)的变量进行管理,当drain时回收内存。
(1) retain,该方法的作用是将内存数据的所有权附给另一指针变量,引用数加1,即retainCount+= 1;
(2) release,该方法是释放指针变量对内存数据的所有权,引用数减1,即retainCount-= 1;
(3) autorelease,该方法是将该对象内存的管理放到autoreleasepool中。

在ARC中与内存管理有关的标识符,可以分为变量标识符和属性标识符,对于变量默认为__strong,而对于属性默认为unsafe_unretained。也存在autoreleasepool。

其中assign/retain/copy与MRC下property的标识符意义相同,strong类似与retain,assign类似于unsafe_unretained,strong/weak/unsafe_unretained与ARC下变量标识符意义相同,只是一个用于属性的标识,一个用于变量的标识(带两个下划短线__)。所列出的其他的标识符与MRC下意义相同。

5. 线程和进程

进程,是并发执行的程序在执行过程中分配和管理资源的基本单位,是一个动态概念,竟争计算机系统资源的基本单位。每一个进程都有一个自己的地址空间,即进程空间或(虚空间)。进程空间的大小 只与处理机的位数有关,一个 16 位长处理机的进程空间大小为 216 ,而 32 位处理机的进程空间大小为 232 。进程至少有 5 种基本状态,它们是:初始态,执行态,等待状态,就绪状态,终止状态。

线程,在网络或多用户环境下,一个服务器通常需要接收大量且不确定数量用户的并发请求,为每一个请求都创建一个进程显然是行不通的,——无论是从系统资源开销方面或是响应用户请求的效率方面来看。因此,操作系统中线程的概念便被引进了。线程,是进程的一部分,一个没有线程的进程可以被看作是单线程的。线程有时又被称为轻权进程或轻量级进程,也是 CPU 调度的一个基本单位。

进程的执行过程是线状的,尽管中间会发生中断或暂停,但该进程所拥有的资源只为该线状执行过程服务。一旦发生进程上下文切换,这些资源都是要被保护起来的。这是进程宏观上的执行过程。而进程又可有单线程进程与多线程进程两种。我们知道,进程有 一个进程控制块 PCB ,相关程序段 和 该程序段对其进行操作的数据结构集 这三部分,单线程进程的执行过程在宏观上是线性的,微观上也只有单一的执行过程;而多线程进程在宏观上的执行过程同样为线性的,但微观上却可以有多个执行操作(线程),如不同代码片段以及相关的数据结构集。线程的改变只代表了 CPU 执行过程的改变,而没有发生进程所拥有的资源变化。除了 CPU 之外,计算机内的软硬件资源的分配与线程无关,线程只能共享它所属进程的资源。与进程控制表和 PCB 相似,每个线程也有自己的线程控制表 TCB ,而这个 TCB 中所保存的线程状态信息则要比 PCB 表少得多,这些信息主要是相关指针用堆栈(系统栈和用户栈),寄存器中的状态数据。进程拥有一个完整的虚拟地址空间,不依赖于线程而独立存在;反之,线程是进程的一部分,没有自己的地址空间,与进程内的其他线程一起共享分配给该进程的所有资源

线程可以有效地提高系统的执行效率,但并不是在所有计算机系统中都是适用的,如某些很少做进程调度和切换的实时系统。使用线程的好处是有多个任务需要处理机处理时,减少处理机的切换时间;而且,线程的创建和结束所需要的系统开销也比进程的创建和结束要小得多。最适用使用线程的系统是多处理机系统和网络系统或分布式系统。

6. 平常常用的多线程处理方式及优缺点

iOS有四种多线程编程的技术,分别是:NSThread,Cocoa NSOperation,GCD(全称:Grand Central Dispatch),pthread。

四种方式的优缺点介绍:

1)NSThread优点:NSThread 比其他两个轻量级缺点:需要自己管理线程的生命周期,线程同步。线程同步对数据的加锁会有一定的系统开销。

2)Cocoa NSOperation优点:不需要关心线程管理, 数据同步的事情,可以把精力放在自己需要执行的操作上。Cocoa operation相关的类是NSOperation, NSOperationQueue.NSOperation是个抽象类,使用它必须用它的子类,可以实现它或者使用它定义好的两个子类: NSInvocationOperation和NSBlockOperation.创建NSOperation子类的对象,把对象添加到NSOperationQueue队列里执行。

3)GCD(全优点)Grand Central dispatch(GCD)是Apple开发的一个多核编程的解决方案。在iOS4.0开始之后才能使用。GCD是一个替代NSThread, NSOperationQueue,NSInvocationOperation等技术的很高效强大的技术。

4) pthread是一套通用的多线程API,适用于Linux\Windows\Unix,跨平台,可移植,使用C语言,生命周期需要程序员管理,IOS开发中使用很少。

GCD线程死锁

GCD 确实好用 ,很强大,相比NSOpretion 无法提供 取消任务的功能。
如此强大的工具用不好可能会出现线程死锁。 如下代码:

- (void)viewDidLoad{ 
[super viewDidLoad];     
NSLog(@"=================4");
dispatch_sync(dispatch_get_main_queue(), 
             ^{ NSLog(@"=================5"); }); 
NSLog(@"=================6");
}

GCD Queue 分为三种:
1,The main queue :主队列,主线程就是在个队列中。
2,Global queues : 全局并发队列。
3,用户队列:是用函数 dispatch_queue_create创建的自定义队列

dispatch_sync 和 dispatch_async 区别:

dispatch_async(queue,block) async 异步队列,dispatch_async
函数会立即返回, block会在后台异步执行。

dispatch_sync(queue,block) sync 同步队列,dispatch_sync
函数不会立即返回,及阻塞当前线程,等待 block同步执行完成。

分析上面代码:
viewDidLoad 在主线程中, 及在dispatch_get_main_queue() 中,执行到sync 时 向
dispatch_get_main_queue()插入 同步 threed。sync 会等到 后面block 执行完成才返回, sync 又再 dispatch_get_main_queue() 队列中,它是串行队列,sync 是后加入的,前一个是主线程,所以 sync 想执行 block 必须等待主线程执行完成,主线程等待 sync 返回,去执行后续内容。照成死锁,sync 等待mainThread 执行完成, mianThread 等待sync 函数返回。下面例子:

- (void)viewDidLoad{ 
[super viewDidLoad]; 
dispatch_async(dispatch_get_global_queue(0, 0), ^{ 
               NSLog(@"=================1");
              dispatch_sync(dispatch_get_main_queue(), ^{ 
              NSLog(@"=================2"); }); 
NSLog(@"=================3"); });
}

程序会完成执行,为什么不会出现死锁。
首先: async 在主线程中 创建了一个异步线程 加入 全局并发队列,async 不会等待block 执行完成,立即返回,
1,async 立即返回, viewDidLoad 执行完毕,及主线程执行完毕。
2,同时,全局并发队列立即执行异步 block , 打印 1, 当执行到 sync 它会等待 block 执行完成才返回, 及等待dispatch_get_main_queue() 队列中的 mianThread 执行完成, 然后才开始调用block 。因为1 和 2 几乎同时执行,因为2 在全局并发队列上, 2 中执行到sync 时 1 可能已经执行完成或 等了一会,mainThread 很快退出, 2 等已执行后继续内容。如果阻塞了主线程,2 中的sync 就无法执行啦,mainThread 永远不会退出, sync 就永远等待着。

7. 大量数据表的优化方案

1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

 select id from t where num is null

最好不要给数据库留NULL,尽可能的使用 NOT NULL填充数据库.

备注、描述、评论之类的可以设置为 NULL,其他的,最好不要使用NULL。

不要以为 NULL 不需要空间,比如:char(100) 型,在字段建立时,空间就固定了, 不管是否插入值(NULL也包含在内),都是占用 100个字符的空间的,如果是varchar这样的变长字段, null 不占用空间。

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num=0

3.应尽量避免在 where 子句中使用 != 或 <> 操作符,否则将引擎放弃使用索引而进行全表扫描。

4.应尽量避免在 where 子句中使用 or 来连接条件,如果一个字段有索引,一个字段没有索引,将导致引擎放弃使用索引而进行全表扫描,如:

 select id from t where num=10 or Name='admin'

可以这样查询:

 select id from t where num=10 union all select id from t where Name='admin'

5.in 和 not in 也要慎用,否则会导致全表扫描,如:

select id from t where num in (1,2,3)

对于连续的数值,能用 between 就不要用 in 了:

 select id from t where num between 1 and 3

很多时候用 exists 代替 in 是一个好的选择:

 select num from a where num in (select num from b)

用下面的语句替换:

 select num from a where exists (select 1 from b where num=a.num)

6.下面的查询也将导致全表扫描:

select id from t where name like ‘%abc%’

若要提高效率,可以考虑全文检索。

7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where num=@num

可以改为强制查询使用索引:

select id from t with (index(索引名)) where num=@num

应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where num/2=100

应改为:

select id from t where num=100*2

9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

 select id from t where substring(name,1,3)=’abc’ -–name以abc开头的id
 select id from t where datediff(day,createdate,’2015-11-30′)=0 -–‘2015-11-30--生成的id

应改为:

select id from t where name like'abc%' 
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'

10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

12.不要写一些没有意义的查询,如需要生成一个空表结构:

select col1,col2 into #t from t where1=0

这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:

create table #t(…)

13.Update 语句,如果只更改1、2个字段,不要Update全部字段,否则频繁调用会引起明显的性能消耗,同时带来大量日志。

14.对于多张大数据量(这里几百条就算大了)的表JOIN,要先分页再JOIN,否则逻辑读会很高,性能很差。

15.select count(*) from table;这样不带任何条件的count会引起全表扫描,并且没有任何业务意义,是一定要杜绝的。

16.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

17.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

18.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连 接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

19.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

20.任何地方都不要使用

  select * from t

用具体的字段列表代替“*”,不要返回用不到的任何字段。

21.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

22.避免频繁创建和删除临时表,以减少系统表资源的消耗。临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件, 最好使用导出表。

23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29.尽量避免大事务操作,提高系统并发能力。

30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

实际案例分析:拆分大的 DELETE 或INSERT 语句,批量提交SQL语句

如果你需要在一个在线的网站上去执行一个大的 DELETE 或 INSERT 查询,你需要非常小心,要避免你的操作让你的整个网站停止相应。因为这两个操作是会锁表的,表一锁住了,别的操作都进不来了。

Apache 会有很多的子进程或线程。所以,其工作起来相当有效率,而我们的服务器也不希望有太多的子进程,线程和数据库链接,这是极大的占服务器资源的事情,尤其是内存。

如果你把你的表锁上一段时间,比如30秒钟,那么对于一个有很高访问量的站点来说,这30秒所积累的访问进程/线程,数据库链接,打开的文件数,可能不仅仅会让你的WEB服务崩溃,还可能会让你的整台服务器马上挂了。

所以,如果你有一个大的处理,你一定把其拆分,使用 LIMIT oracle(rownum),sqlserver(top)条件是一个好的方法。下面是一个mysql示例:

while(1){//每次只做1000条
mysql_query(“delete from logs where log_date <= ’2015-11-01’ limit 1000”);
if(mysql_affected_rows() == 0){//删除完成,退出!break;
}//每次暂停一段时间,释放表让其他进程/线程访问。
usleep(50000)
}

8. 常用到的动画库

Facebook 开源动画库 Pop 的 GitHub 主页:facebook/pop · GitHub,介绍:Playing with Pop (i)

Canvas 项目主页:Canvas – Simplify iOS Development,介绍:Animate in Xcode Without Code

拿 Canvas 来和 Pop 比其实不大合适,虽然两者都自称「动画库」,但是「库」这个词的含义有所区别。本质上 Canvas 是一个「动画合集」而 Pop 是一个「动画引擎」。

先说 Canvas。Canvas 的目的是「Animate in Xcode Without Code」。开发者可以通过在 Storyboard 中指定 User Defined Runtime Attributes 来实现一些 Canvas 中预设的动画,也就是他网站上能看到的那些。但是除了更改动画的 delay 和 duration 基本上不能调整其他的参数。

Pop 就不一样了。如果说 Canvas 是对 Core Animation 的封装,Pop 则是对 Core Animation(以及 UIDynamics)的再实现。

Pop 语法上和 Core Animation 相似,效果上则不像 Canvas 那么生硬(时间四等分,振幅硬编码)。这使得对 Core Animation 有了解的程序员可以很轻松地把原来的「静态动画」转换成「动态动画」。

同时 Pop 又往前多走了一步。既然动画的本质是根据时间函数来做插值,那么理论上任何一个对象的任何一个值都可以用来做插值,而不仅仅是 Core Animation 里定死的那一堆大小、位移、旋转、缩放等 animatable properties。

9. Restful架构

REST是一种架构风格,其核心是面向资源,REST专门针对网络应用设计和开发方式,以降低开发的复杂性,提高系统的可伸缩性。REST提出设计概念和准则为:

  1.网络上的所有事物都可以被抽象为资源(resource)
  2.每一个资源都有唯一的资源标识(resource identifier),对资源的操作不会改变这些标识
  3.所有的操作都是无状态的

REST简化开发,其架构遵循CRUD原则,该原则告诉我们对于资源(包括网络资源)只需要四种行为:创建,获取,更新和删除就可以完成相关的操作和处理。您可以通过统一资源标识符(Universal Resource Identifier,URI)来识别和定位资源,并且针对这些资源而执行的操作是通过 HTTP 规范定义的。其核心操作只有GET,PUT,POST,DELETE。

由于REST强制所有的操作都必须是stateless的,这就没有上下文的约束,如果做分布式,集群都不需要考虑上下文和会话保持的问题。极大的提高系统的可伸缩性。

RESTful架构:
(1)每一个URI代表一种资源;
(2)客户端和服务器之间,传递这种资源的某种表现层;
(3)客户端通过四个HTTP动词,对服务器端资源进行操作,实现”表现层状态转化”。

10. 请分析下SDWebImage的原理

这个类库提供一个UIImageView类别以支持加载来自网络的远程图片。具有缓存管理、异步下载、同一个URL下载次数控制和优化等特征。

SDWebImage 加载图片的流程
1.入口 setImageWithURL:placeholderImage:options: 会先把 placeholderImage 显示,然后 SDWebImageManager 根据 URL 开始处理图片。

2.进入 SDWebImageManager-downloadWithURL:delegate:options:userInfo:,交给 SDImageCache 从缓存查找图片是否已经下载 queryDiskCacheForKey:delegate:userInfo:.

3.先从内存图片缓存查找是否有图片,如果内存中已经有图片缓存,SDImageCacheDelegate 回调 imageCache:didFindImage:forKey:userInfo: 到 SDWebImageManager。

4.SDWebImageManagerDelegate 回调 webImageManager:didFinishWithImage: 到 UIImageView+WebCache 等前端展示图片。

5.如果内存缓存中没有,生成 NSInvocationOperation 添加到队列开始从硬盘查找图片是否已经缓存。

6.根据 URLKey 在硬盘缓存目录下尝试读取图片文件。这一步是在 NSOperation 进行的操作,所以回主线程进行结果回调 notifyDelegate:。

7.如果上一操作从硬盘读取到了图片,将图片添加到内存缓存中(如果空闲内存过小,会先清空内存缓存)。SDImageCacheDelegate 回调 imageCache:didFindImage:forKey:userInfo:。进而回调展示图片。

8.如果从硬盘缓存目录读取不到图片,说明所有缓存都不存在该图片,需要下载图片,回调 imageCache:didNotFindImageForKey:userInfo:。

9.共享或重新生成一个下载器 SDWebImageDownloader 开始下载图片。

10.图片下载由 NSURLConnection 来做,实现相关 delegate 来判断图片下载中、下载完成和下载失败。

11.connection:didReceiveData: 中利用 ImageIO 做了按图片下载进度加载效果。

12.connectionDidFinishLoading: 数据下载完成后交给 SDWebImageDecoder 做图片解码处理。

13.图片解码处理在一个 NSOperationQueue 完成,不会拖慢主线程 UI。如果有需要对下载的图片进行二次处理,最好也在这里完成,效率会好很多。

14.在主线程 notifyDelegateOnMainThreadWithInfo: 宣告解码完成,imageDecoder:didFinishDecodingImage:userInfo: 回调给 SDWebImageDownloader。

15.imageDownloader:didFinishWithImage: 回调给 SDWebImageManager 告知图片下载完成。

16.通知所有的 downloadDelegates 下载完成,回调给需要的地方展示图片。

17.将图片保存到 SDImageCache 中,内存缓存和硬盘缓存同时保存。写文件到硬盘也在以单独 NSInvocationOperation 完成,避免拖慢主线程。

18.SDImageCache 在初始化的时候会注册一些消息通知,在内存警告或退到后台的时候清理内存图片缓存,应用结束的时候清理过期图片。

19.SDWI 也提供了 UIButton+WebCache 和 MKAnnotationView+WebCache,方便使用。

20.SDWebImagePrefetcher 可以预先下载图片,方便后续使用。

SDWebImage库的作用

通过对UIImageView的类别扩展来实现异步加载替换图片的工作。

主要用到的对象:
1、UIImageView (WebCache)类别,入口封装,实现读取图片完成后的回调
2、SDWebImageManager,对图片进行管理的中转站,记录那些图片正在读取。
向下层读取Cache(调用SDImageCache),或者向网络读取对象(调用SDWebImageDownloader) 。
实现SDImageCache和SDWebImageDownloader的回调。
3、SDImageCache,根据URL的MD5摘要对图片进行存储和读取(实现存在内存中或者存在硬盘上两种实现)
实现图片和内存清理工作。
4、SDWebImageDownloader,根据URL向网络读取数据(实现部分读取和全部读取后再通知回调两种方式)

其他类:
SDWebImageDecoder,异步对图像进行了一次解压⋯⋯

1、SDImageCache是怎么做数据管理的?

SDImageCache分两个部分,一个是内存层面的,一个是硬盘层面的。内存层面的相当是个缓存器,以Key-Value的形式存储图片。当内存不够的时候会清除所有缓存图片。用搜索文件系统的方式做管理,文件替换方式是以时间为单位,剔除时间大于一周的图片文件。当SDWebImageManager向SDImageCache要资源时,先搜索内存层面的数据,如果有直接返回,没有的话去访问磁盘,将图片从磁盘读取出来,然后做Decoder,将图片对象放到内存层面做备份,再返回调用层。

2、为啥必须做Decoder?
由于UIImage的imageWithData函数是每次画图的时候才将Data解压成ARGB的图像,所以在每次画图的时候,会有一个解压操作,这样效率很低,但是只有瞬时的内存需求。为了提高效率通过SDWebImageDecoder将包装在Data下的资源解压,然后画在另外一张图片上,这样这张新图片就不再需要重复解压了。
这种做法是典型的空间换时间的做法。

1. 反转二叉树,不用递归

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */

递归方式:

public class Solution {
public TreeNode invertTree(TreeNode root) {
    if (root == null) {
        return null;
    }
    root.left = invertTree(root.left);
    root.right = invertTree(root.right);
    TreeNode tmp = root.left;
    root.left = root.right;
    root.right = tmp;
    return root;
}
}

object-c实现:

/** 
 * 翻转二叉树(又叫:二叉树的镜像) 
 *
 * @param rootNode 根节点
 *
 * @return 翻转后的树根节点(其实就是原二叉树的根节点) 
 */
 + (BinaryTreeNode *)invertBinaryTree:(BinaryTreeNode *)rootNode {
    if (!rootNode) {  return nil; } 
    if (!rootNode.leftNode && !rootNode.rightNode) {  return rootNode; } 
    [self invertBinaryTree:rootNode.leftNode];
    [self invertBinaryTree:rootNode.rightNode]; 
    BinaryTreeNode *tempNode = rootNode.leftNode; 
    rootNode.leftNode = rootNode.rightNode;
    rootNode.rightNode = tempNode; 
    return rootNode;
  }

非递归方式:

+ (BinaryTreeNode *)invertBinaryTree:(BinaryTreeNode *)rootNode {
if (!rootNode) {  return nil; }
if (!rootNode.leftNode && !rootNode.rightNode) {  return rootNode; }
NSMutableArray *queueArray = [NSMutableArray array]; //数组当成队列
[queueArray addObject:rootNode]; //压入根节点
while (queueArray.count > 0) {
    BinaryTreeNode *node = [queueArray firstObject];
    [queueArray removeObjectAtIndex:0]; //弹出最前面的节点,仿照队列先进先出原则
    BinaryTreeNode *pLeft = node.leftNode;
    node.leftNode = node.rightNode;
    node.rightNode = pLeft;

    if (node.leftNode) {
        [queueArray addObject:node.leftNode];
    }
    if (node.rightNode) {
        [queueArray addObject:node.rightNode];
    }

}

return rootNode;
}

示例代码参考:二叉树

2. 写一个单例模式

+ (AccountManager *)sharedManager
{
    static AccountManager *sharedAccountManagerInstance = nil;
    static dispatch_once_t predicate;
    dispatch_once(&predicate, ^{
            sharedAccountManagerInstance = [[self alloc] init]; 
    });
return sharedAccountManagerInstance;
}

3. iOS应用生命周期

应用程序的状态
Not running未运行:程序没启动。
Inactive未激活:程序在前台运行,不过没有接收到事件。在没有事件处理情况下程序通常停留在这个状态。
Active激活:程序在前台运行而且接收到了事件。这也是前台的一个正常的模式。
Backgroud后台:程序在后台而且能执行代码,大多数程序进入这个状态后会在在这个状态上停留一会。时间到之后会进入挂起状态(Suspended)。有的程序经过特殊的请求后可以长期处于Backgroud状态。
Suspended挂起:程序在后台不能执行代码。系统会自动把程序变成这个状态而且不会发出通知。当挂起时,程序还是停留在内存中的,当系统内存低时,系统就把挂起的程序清除掉,为前台程序提供更多的内存。

iOS的入口在main.m文件:

int main(int argc, char *argv[])
{
@autoreleasepool {
    return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
}
}

main函数的两个参数,iOS中没有用到,包括这两个参数是为了与标准ANSI C保持一致。 UIApplicationMain函数,前两个和main函数一样,重点是后两个。

后两个参数分别表示程序的主要类(principal class)和代理类(delegate class)。如果主要类(principal class)为nil,将从Info.plist中获取,如果Info.plist中不存在对应的key,则默认为UIApplication;如果代理类(delegate class)将在新建工程时创建。
根据UIApplicationMain函数,程序将进入AppDelegate.m,这个文件是xcode新建工程时自动生成的。下面看一下AppDelegate.m文件,这个关乎着应用程序的生命周期。

1、application didFinishLaunchingWithOptions:当应用程序启动时执行,应用程序启动入口,只在应用程序启动时执行一次。若用户直接启动,lauchOptions内无数据,若通过其他方式启动应用,lauchOptions包含对应方式的内容。
2、applicationWillResignActive:在应用程序将要由活动状态切换到非活动状态时候,要执行的委托调用,如 按下 home 按钮,返回主屏幕,或全屏之间切换应用程序等。
3、applicationDidEnterBackground:在应用程序已进入后台程序时,要执行的委托调用。
4、applicationWillEnterForeground:在应用程序将要进入前台时(被激活),要执行的委托调用,刚好与applicationWillResignActive 方法相对应。
5、applicationDidBecomeActive:在应用程序已被激活后,要执行的委托调用,刚好与applicationDidEnterBackground 方法相对应。
6、applicationWillTerminate:在应用程序要完全推出的时候,要执行的委托调用,这个需要要设置UIApplicationExitsOnSuspend的键值。

初次启动:
iOS_didFinishLaunchingWithOptions
iOS_applicationDidBecomeActive
按下home键:
iOS_applicationWillResignActive
iOS_applicationDidEnterBackground
点击程序图标进入:
iOS_applicationWillEnterForeground
iOS_applicationDidBecomeActive

当应用程序进入后台时,应该保存用户数据或状态信息,所有没写到磁盘的文件或信息,在进入后台时,最后都写到磁盘去,因为程序可能在后台被杀死。释放尽可能释放的内存。

- (void)applicationDidEnterBackground:(UIApplication *)application

方法有大概5秒的时间让你完成这些任务。如果超过时间还有未完成的任务,你的程序就会被终止而且从内存中清除。

如果还需要长时间的运行任务,可以在该方法中调用

[application beginBackgroundTaskWithExpirationHandler:^{ 

    NSLog(@"begin Background Task With Expiration Handler"); 

}];

程序终止

程序只要符合以下情况之一,只要进入后台或挂起状态就会终止:

①iOS4.0以前的系统

②app是基于iOS4.0之前系统开发的。

③设备不支持多任务

④在Info.plist文件中,程序包含了 UIApplicationExitsOnSuspend 键。

系统常常是为其他app启动时由于内存不足而回收内存最后需要终止应用程序,但有时也会是由于app很长时间才响应而终止。如果app当时运行在后台并且没有暂停,系统会在应用程序终止之前调用app的代理的方法 – (void)applicationWillTerminate:(UIApplication *)application,这样可以让你可以做一些清理工作。你可以保存一些数据或app的状态。这个方法也有5秒钟的限制。超时后方法会返回程序从内存中清除。

注意:用户可以手工关闭应用程序。

4. 一工人给老板打7天工要求一块金条 这金条只能切2次 工人每天要1/7金条 怎么分?

这道题解决的主要难点在于:不是给出去的就收不回来了,可以用交换的方法。

把金条分成三段(就是分两次,或者切两刀),分别是整根金条的1/7、2/7、 4/7。

第一天:给1/7的, 第二天:给2/7的,收回1/7的; 第三天,给1/7的; 第四天:给4/7的,收回1/7和2/7的 ;第五天:给1/7的 ;第六天:给2/7的,收回1/7的;第七天发1/7。

5. iOS中socket使用

Socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API),通过Socket,我们才能使用TCP/IP协议。

http协议 对应于应用层
tcp协议 对应于传输层
ip协议 对应于网络层
三者本质上没有可比性。 何况HTTP协议是基于TCP连接的。

TCP/IP是传输层协议,主要解决数据如何在网络中传输;而HTTP是应用层协议,主要解决如何包装数据。

我 们在传输数据时,可以只使用传输层(TCP/IP),但是那样的话,由于没有应用层,便无法识别数据内容,如果想要使传输的数据有意义,则必须使用应用层 协议,应用层协议很多,有HTTP、FTP、TELNET等等,也可以自己定义应用层协议。WEB使用HTTP作传输层协议,以封装HTTP文本信息,然 后使用TCP/IP做传输层协议将它发送到网络上。

SOCKET原理
1、套接字(socket)概念
套接字(socket)是通信的基石,是支持TCP/IP协议的网络通信的基本操作单元。它是网络通信过程中端点的抽象表示,包含进行网络通信必须的五种信息:连接使用的协议,本地主机的IP地址,本地进程的协议端口,远地主机的IP地址,远地进程的协议端口。

应 用层通过传输层进行数据通信时,TCP会遇到同时为多个应用程序进程提供并发服务的问题。多个TCP连接或多个应用程序进程可能需要通过同一个 TCP协议端口传输数据。为了区别不同的应用程序进程和连接,许多计算机操作系统为应用程序与TCP/IP协议交互提供了套接字(Socket)接口。应 用层可以和传输层通过Socket接口,区分来自不同应用程序进程或网络连接的通信,实现数据传输的并发服务。

2 、建立socket连接
建立Socket连接至少需要一对套接字,其中一个运行于客户端,称为ClientSocket,另一个运行于服务器端,称为ServerSocket。

套接字之间的连接过程分为三个步骤:服务器监听,客户端请求,连接确认。

服务器监听:服务器端套接字并不定位具体的客户端套接字,而是处于等待连接的状态,实时监控网络状态,等待客户端的连接请求。

客户端请求:指客户端的套接字提出连接请求,要连接的目标是服务器端的套接字。为此,客户端的套接字必须首先描述它要连接的服务器的套接字,指出服务器端套接字的地址和端口号,然后就向服务器端套接字提出连接请求。

连 接确认:当服务器端套接字监听到或者说接收到客户端套接字的连接请求时,就响应客户端套接字的请求,建立一个新的线程,把服务器端套接字的描述发给客户 端,一旦客户端确认了此描述,双方就正式建立连接。而服务器端套接字继续处于监听状态,继续接收其他客户端套接字的连接请求。

3、SOCKET连接与TCP连接
创建Socket连接时,可以指定使用的传输层协议,Socket可以支持不同的传输层协议(TCP或UDP),当使用TCP协议进行连接时,该Socket连接就是一个TCP连接。

4、Socket连接与HTTP连接
由 于通常情况下Socket连接就是TCP连接,因此Socket连接一旦建立,通信双方即可开始相互发送数据内容,直到双方连接断开。但在实际网络应用 中,客户端到服务器之间的通信往往需要穿越多个中间节点,例如路由器、网关、防火墙等,大部分防火墙默认会关闭长时间处于非活跃状态的连接而导致 Socket 连接断连,因此需要通过轮询告诉网络,该连接处于活跃状态。

而HTTP连接使用的是“请求—响应”的方式,不仅在请求时需要先建立连接,而且需要客户端向服务器发出请求后,服务器端才能回复数据。

很 多情况下,需要服务器端主动向客户端推送数据,保持客户端与服务器数据的实时与同步。此时若双方建立的是Socket连接,服务器就可以直接将数据传送给 客户端;若双方建立的是HTTP连接,则服务器需要等到客户端发送一次请求后才能将数据传回给客户端,因此,客户端定时向服务器端发送连接请求,不仅可以 保持在线,同时也是在“询问”服务器是否有新的数据,如果有就将数据传给客户端。

下面这篇文章是AsyncSocket的使用教程,大家可以看看。

6. 网络请求中post和get的区别

GET是用于获取数据的,POST一般用于将数据发给服务器之用。

普遍答案
1.GET使用URL或Cookie传参。而POST将数据放在BODY中。
2.GET的URL会有长度上的限制,则POST的数据则可以非常大。
3.POST比GET安全,因为数据在地址栏上不可见。

不过也有文章说其实上面的是错误的,具体参考这篇文章

7. 时间复杂度和空间复杂度

由于打不出数字符号,只能贴图了。

时间复杂度

求时间复杂度
【1】如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

x=91; y=100;while(y>0) if(x>100) {x=x-10;y--;} else x++;解答: T(n)=O(1)

这段程序的运行是和n无关的,就算它再循环一万年,我们也不管他,只是一个常数阶的函数。

【2】当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

 x=1; 
for(i=1;i<=n;i++) 
    for(j=1;j<=i;j++)
       for(k=1;k<=j;k++)
           x++;

该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数: 则该程序段的时间复杂度为

2

【3】算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。
在数值A[0..n-1]中查找给定值K的算法大致如下:

i=n-1;            
while(i>=0&&(A[i]!=k))       
  i--;        
return i;

此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关: ①若A中没有与K相等的元素,则语句(3)的频度f(n)=n; ②若A的最后一个元素等于K,则语句(3)的频度f(n)是常数0。

空间复杂度
一个程序的空间复杂度是指运行完一个程序所需内存的大小。利用程序的空间复杂度,可以对程序的运行所需要的内存多少有个预先估计。一个程序执行时除了需要存储空间和存储本身所使用的指令、常数、变量和输入数据外,还需要一些对数据进行操作的工作单元和存储一些为现实计算所需信息的辅助空间。程序执行时所需存储空间包括以下两部分。

(1)固定部分。这部分空间的大小与输入/输出的数据的个数多少、数值无关。主要包括指令空间(即代码空间)、数据空间(常量、简单变量)等所占的空间。这部分属于静态空间。
(2)可变空间,这部分空间的主要包括动态分配的空间,以及递归栈所需的空间等。这部分的空间大小与算法有关。

一个算法所需的存储空间用f(n)表示。S(n)=O(f(n))  其中n为问题的规模,S(n)表示空间复杂度。

8. 支付宝SDK使用

使用支付宝进行一个完整的支付功能,大致有以下步骤:向支付宝申请, 与支付宝签约,获得商户ID(partner)和账号ID(seller)和私钥(privateKey)。下载支付宝SDK,生成订单信息,签名加密调用支付宝客户端,由支付宝客户端跟支付宝安全服务器打交道。支付完毕后,支付宝客户端会自动跳回到原来的应用程序,在原来的应用程序中显示支付结果给用户看。

集成之后可能遇到的问题
1)集成SDK编译时找不到 openssl/asn1.h 文件

技术分享

解决方案:Build Settings –> Search Paths –> Header Search paths : $(SRCROOT)/支付宝集成/Classes/Alipay

技术分享

2)链接时:找不到 SystemConfiguration.framework 这个库

技术分享

解决方案:

技术分享

打开支付宝客户端进行支付(用户没有安装支付宝客户端,直接在应用程序中添加一个WebView,通过网页让用户进行支付)
// 注意:如果是通过网页支付完成,那么会回调该block:callback

 [[AlipaySDK defaultService] payOrder:orderString fromScheme:@"jingdong" callback:^(NSDictionary *resultDic) { }];

在AppDelegate.m

// 当通过别的应用程序,将该应用程序打开时,会调用该方法
- (BOOL)application:(UIApplication *)app openURL:(NSURL *)url options:(NSDictionary<NSString *,id> *)options{ // 当用户通过支付宝客户端进行支付时,会回调该block:standbyCallback 
[[AlipaySDK defaultService] processOrderWithPaymentResult:url standbyCallback:^(NSDictionary *resultDic) { NSLog(@"result = %@",resultDic); }]; return YES;}

9. 远程推送

当服务端远程向APNS推送至一台离线的设备时,苹果服务器Qos组件会自动保留一份最新的通知,等设备上线后,Qos将把推送发送到目标设备上

远程推送的基本过程
1.客户端的app需要将用户的UDID和app的bundleID发送给apns服务器,进行注册,apns将加密后的device Token返回给app
2.app获得device Token后,上传到公司服务器
3.当需要推送通知时,公司服务器会将推送内容和device Token一起发给apns服务器
4.apns再将推送内容送到客户端上

创建证书的流程:
1.打开钥匙串,生成CertificateSigningRequest.certSigningRequest文件
2.将CertificateSigningRequest.certSigningRequest上传进developer,导出.cer文件
3.利用CSR导出P12文件
4.需要准备下设备token值(无空格)
5.使用OpenSSL合成服务器所使用的推送证书

本地app代码参考
1.注册远程通知

 - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions//中注册远程通知
{
[[UIApplication sharedApplication] registerForRemoteNotificationTypes:(UIRemoteNotificationTypeAlert | UIRemoteNotificationTypeBadge | UIRemoteNotificationTypeSound)];
}

2,实现几个代理方法:

//获取deviceToken令牌  
-(void)application:(UIApplication *)application didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken  
{  
//获取设备的deviceToken唯一编号  
NSLog(@"deviceToken=%@",deviceToken);  
NSString *realDeviceToken=[NSString stringWithFormat:@"%@",deviceToken];  
//去除<>  
realDeviceToken = [realDeviceToken stringByReplacingOccurrencesOfString:@"<" withString:@""];  
realDeviceToken = [realDeviceToken stringByReplacingOccurrencesOfString:@">" withString:@""];  
NSLog(@"realDeviceToken=%@",realDeviceToken);  
[[NSUserDefaults standardUserDefaults] setValue:realDeviceToken forKey:@"DeviceToken"];  //要发送给服务器
}  

 //获取令牌出错  
-(void)application:(UIApplication *)application didFailToRegisterForRemoteNotificationsWithError:(NSError *)error  
{  
//注册远程通知设备出错  
NSLog(@"RegisterForRemoteNotification error=%@",error);  
}  
//在应用在前台时受到消息调用  
-(void)application:(UIApplication *)application didReceiveRemoteNotification:(NSDictionary *)userInfo  
{  
 //打印推送的消息  
NSLog(@"%@",[[userInfo objectForKey:@"aps"] objectForKey:@"alert"]):  
}

配置后台模式

一般我们是使用开发版本的Provisioning做推送测试,如果没有问题,再使用发布版本证书的时候一般也应该是没有问题的。为了以防万一,我们可以在越狱的手机上安装我们的使用发布版证书的ipa文件(最好使用debug版本,并打印出获取到的deviceToken),安装成功后在;XCode->Window->Organizer-找到对应的设备查看console找到打印的deviceToken。

在后台的推送程序中使用发布版制作的证书并使用该deviceToken做推送服务.
使用开发和发布证书获取到的deviceToken是不一样的。

10. @protocol 和 category 中如何使用 @property

1)在protocol中使用property只会生成setter和getter方法声明,我们使用属性的目的,是希望遵守我协议的对象能实现该属性

2)category 使用 @property 也是只会生成setter和getter方法的声明,如果我们真的需要给category增加属性的实现,需要借助于运行时的两个函数:

①objc_setAssociatedObject

②objc_getAssociatedObject

1. Runtime

Objective-C 是面相运行时的语言(runtime oriented language),就是说它会尽可能的把编译和链接时要执行的逻辑延迟到运行时。这就给了你很大的灵活性,你可以按需要把消息重定向给合适的对象,你甚 至可以交换方法的实现,等等。

RunTime简称运行时。就是系统在运行的时候的一些机制,其中最主要的是消息机制。OC的函数调用成为消息发送。属于动态调用过程。在编译的时候并不能决定真正调用哪个函数(事实证明,在编 译阶段,OC可以调用任何函数,即使这个函数并未实现,只要申明过就不会报错。而C语言在编译阶段就会报错)。只有在真正运行的时候才会根据函数的名称找 到对应的函数来调用。

以下面的代码为例:

[obj makeText];

其中obj是一个对象,makeText是一个函数名称。对于这样一个简单的调用。在编译时RunTime会将上述代码转化成

objc_msgSend(obj,@selector(makeText));

首先,编译器将代码[obj makeText];转化为objc_msgSend(obj, @selector (makeText));,在objc_msgSend函数中。首先通过obj的isa指针找到obj对应的class。在Class中先去cache中 通过SEL查找对应函数method(猜测cache中method列表是以SEL为key通过hash表来存储的,这样能提高函数查找速度),若 cache中未找到。再去methodList中查找,若methodlist中未找到,则取superClass中查找。若能找到,则将method加 入到cache中,以方便下次查找,并通过method中的函数指针跳转到对应的函数中去执行。

Objective-C Runtime 是什么?
Objective-C 的 Runtime 是一个运行时库(Runtime Library),它是一个主要使用 C 和汇编写的库,为 C 添加了面相对象的能力并创造了 Objective-C。这就是说它在类信息(Class information) 中被加载,完成所有的方法分发,方法转发,等等。Objective-C runtime 创建了所有需要的结构体,让 Objective-C 的面相对象编程变为可能。

Method Swizzling 原理

在Objective-C中调用一个方法,其实是向一个对象发送消息,查找消息的唯一依据是selector的名字。利用Objective-C的动态特性,可以实现在运行时偷换selector对应的方法实现,达到给方法挂钩的目的。每个类都有一个方法列表,存放着selector的名字和方法实现的映射关系。IMP有点类似函数指针,指向具体的Method实现。

我们可以利用 method_exchangeImplementations 来交换2个方法中的IMP,
我们可以利用 class_replaceMethod 来修改类,
我们可以利用 method_setImplementation 来直接设置某个方法的IMP,……
归根结底,都是偷换了selector的IMP。

2. GCD实现1,2并行和3串行和45串行,4,5是并行。即3依赖1,2的执行,45依赖3的执行。

关系

队列组的方式

- (void) methodone{
dispatch_group_t group = dispatch_group_create();

dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    NSLog(@"%d",1);
});

dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    NSLog(@"%d",2);
});

dispatch_group_notify(group, dispatch_get_main_queue(), ^{
    NSLog(@"3");

    dispatch_group_t group1 = dispatch_group_create();

    dispatch_group_async(group1, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        NSLog(@"%d",4);
    });

    dispatch_group_async(group1, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        NSLog(@"%d",5);
    });

});

}

串行队列:队列中的任务只会顺序执行

dispatch_queue_t q = dispatch_queue_create(“....”, dispatch_queue_serial);

并行队列: 队列中的任务通常会并发执行。

dispatch_queue_t q = dispatch_queue_create("......", dispatch_queue_concurrent);

全局队列:是系统开发的,直接拿过来用就可以;与并行队列类似,但调试时,无法确认操作所在队列 。

dispatch_queue_t q = dispatch_get_global_queue(dispatch_queue_priority_default, 0);

主队列:每一个应用开发程序对应唯一一个主队列,直接get即可;在多线程开发中,使用主队列更新UI。

dispatch_queue_t q = dispatch_get_main_queue();

主队列是GCD自带的串行队列,会在主线程中执行。异步全局并发队列 开启新线程,并发执行。

并行队列里开启同步任务是有执行顺序的,只有异步才没有顺序。

串行队列开启异步任务,是有顺序的。

串行队列开启异步任务后嵌套同步任务造成死锁。

3. 深浅复制和属性为copy,strong值的变化问题

浅复制:只复制指向对象的指针,而不复制引用对象本身。对于浅复制来说,A和A_copy指向的是同一个内存资源,复制的只不个是一个指针,对象本身资源还是只有一份,那如果我们对A_copy执行了修改操作,那么发现A引用的对象同样被修改了。深复制就好理解了,内存中存在了两份独立对象本身。

在Objective-C中并不是所有的对象都支持Copy,MutableCopy,遵守NSCopying协议的类才可以发送Copy消息,遵守NSMutableCopying协议的类才可以发送MutableCopy消息。

[immutableObject copy] // 浅拷贝
[immutableObject mutableCopy] //深拷贝
[mutableObject copy] //深拷贝
[mutableObject mutableCopy] //深拷贝

属性设为copy,指定此属性的值不可更改,防止可变字符串更改自身的值的时候不会影响到对象属性(如NSString,NSArray,NSDictionary)的值。strong此属性的指会随着变化而变化。copy是内容拷贝,strong是指针拷贝。

4.NSTimer创建后,会在哪个线程运行。

用scheduledTimerWithTimeInterval创建的,在哪个线程创建就会被加入哪个线程的RunLoop中就运行在哪个线程。

自己创建的Timer,加入到哪个线程的RunLoop中就运行在哪个线程。

5. KVO,NSNotification,delegate及block区别

KVO就是cocoa框架实现的观察者模式,一般同KVC搭配使用,通过KVO可以监测一个值的变化,比如View的高度变化。是一对多的关系,一个值的变化会通知所有的观察者。

NSNotification是通知,也是一对多的使用场景。在某些情况下,KVO和NSNotification是一样的,都是状态变化之后告知对方。NSNotification的特点,就是需要被观察者先主动发出通知,然后观察者注册监听后再来进行响应,比KVO多了发送通知的一步,但是其优点是监听不局限于属性的变化,还可以对多种多样的状态变化进行监听,监听范围广,使用也更灵活。

delegate 是代理,就是我不想做的事情交给别人做。比如狗需要吃饭,就通过delegate通知主人,主人就会给他做饭、盛饭、倒水,这些操作,这些狗都不需要关心,只需要调用delegate(代理人)就可以了,由其他类完成所需要的操作。所以delegate是一对一关系。

block是delegate的另一种形式,是函数式编程的一种形式。使用场景跟delegate一样,相比delegate更灵活,而且代理的实现更直观。

KVO一般的使用场景是数据,需求是数据变化,比如股票价格变化,我们一般使用KVO(观察者模式)。delegate一般的使用场景是行为,需求是需要别人帮我做一件事情,比如买卖股票,我们一般使用delegate。Notification一般是进行全局通知,比如利好消息一出,通知大家去买入。delegate是强关联,就是委托和代理双方互相知道,你委托别人买股票你就需要知道经纪人,经纪人也不要知道自己的顾客。Notification是弱关联,利好消息发出,你不需要知道是谁发的也可以做出相应的反应,同理发消息的人也不需要知道接收的人也可以正常发出消息。

6. 如何让计时器调用一个类方法

计时器只能调用实例方法,但是可以在这个实例方法里面调用静态方法。

使用计时器需要注意,计时器一定要加入RunLoop中,并且选好model才能运行。scheduledTimerWithTimeInterval方法创建一个计时器并加入到RunLoop中所以可以直接使用。

如果计时器的repeats选择YES说明这个计时器会重复执行,一定要在合适的时机调用计时器的invalid。不能在dealloc中调用,因为一旦设置为repeats 为yes,计时器会强持有self,导致dealloc永远不会被调用,这个类就永远无法被释放。比如可以在viewDidDisappear中调用,这样当类需要被回收的时候就可以正常进入dealloc中了。

7. 调用一个类的静态方法需不需要release?

静态方法,就是类方法,不需要,类方法对象放在autorelease中

8. static作用?

(1)函数体内 static 变量的作用范围为该函数体,不同于 auto 变量,该变量的内存只被分配一次,因此其值在下次调用时仍维持上次的值;
(2)在模块内的 static 全局变量可以被模块内所用函数访问,但不能被模块外其它函数访问;
(3)在模块内的 static 函数只可被这一模块内的其它函数调用,这个函数的使用范围被限制在声明
它的模块内;
(4)在类中的 static 成员变量属于整个类所拥有,对类的所有对象只有一份拷贝;
(5)在类中的 static 成员函数属于整个类所拥有,这个函数不接收 this 指针,因而只能访问类的static 成员变量。

9. NSObject的load和initialize方法

load和initialize的共同特点
在不考虑开发者主动使用的情况下,系统最多会调用一次
如果父类和子类都被调用,父类的调用一定在子类之前
都是为了应用运行提前创建合适的运行环境
在使用时都不要过重地依赖于这两个方法,除非真正必要

load和initialize的区别
load方法

调用时机比较早,运行环境有不确定因素。具体说来,在iOS上通常就是App启动时进行加载,但当load调用的时候,并不能保证所有类都加载完成且可用,必要时还要自己负责做auto release处理。对于有依赖关系的两个库中,被依赖的类的load会优先调用。但在一个库之内,调用顺序是不确定的。

对于一个类而言,没有load方法实现就不会调用,不会考虑对NSObject的继承。

一个类的load方法不用写明[super load],父类就会收到调用,并且在子类之前。

Category的load也会收到调用,但顺序上在主类的load调用之后。

不会直接触发initialize的调用。

initialize方法相关要点

initialize的自然调用是在第一次主动使用当前类的时候。

在initialize方法收到调用时,运行环境基本健全。

initialize的运行过程中是能保证线程安全的。

和load不同,即使子类不实现initialize方法,会把父类的实现继承过来调用一遍。注意的是在此之前,父类的方法已经被执行过一次了,同样不需要super调用。

由于initialize的这些特点,使得其应用比load要略微广泛一些。可用来做一些初始化工作,或者单例模式的一种实现方案。

10. 能否向编译后得到的类中增加实例变量?能否向运行时创建的类中添加实例变量?为什么?

不能向编译后得到的类中增加实例变量;
能向运行时创建的类中添加实例变量;

因为编译后的类已经注册在 runtime 中,类结构体中的 objc_ivar_list 实例变量的链表 和 instance_size 实例变量的内存大小已经确定,同时runtime 会调用 class_setIvarLayout 或 class_setWeakIvarLayout 来处理 strong weak 引用。所以不能向存在的类中添加实例变量;

运行时创建的类是可以添加实例变量,调用 class_addIvar 函数。但是得在调用 objc_allocateClassPair 之后,objc_registerClassPair 之前,原因同上。

==============华丽的分割线========================

特注:以上面试题已全部收录到IT面试宝典-(Objective-C)  iOS题库(为万千程序员分享):

下载地址:IT面试宝典APP   点此下载

 在此代表万千程序员感谢原作者为大家分享的宝贵经验:
文/吴白(简书作者)
原文链接:http://www.jianshu.com/p/5178204a58d6
著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。

 


入职你的梦想 VS 变现你的技术

IT面试宝典码农市场